突变扩增阻滞系统(amplification refractory mutation system, ARMS)能够利用单个PCR反应体系同时检测两个等位基因,不需要限制性核酸内切酶,具有快速、价廉的优点,并可以区分等位基因是否纯和。目前,ARMS系统已成为国际上肿瘤个体化分子检测最重要、最先进的技术之一,其在临床应用中的优势已被业内专家广泛认可。
ARMS技术利用特异引物对突变靶序列进行高精准PCR扩增放大,与此同时,利用探针对扩增产物进行检测,在实时荧光定量 PCR平台上实现对样品DNA中稀有突变的检测,以达到对基因突变检测的高特异性和高灵敏度。ARMS方法检测灵敏度明显高于直接测序法等其他方法,可检测出样品中含量低至0.1-1.0%的突变基因;该方法在设计上可以最大限度地缩短目标产物的长度,可以解决石蜡包埋组织标本提取的DNA大部分片段化而无法得到准确检测结果的难点;该方法结合实时PCR平台实现扩增时闭管操作,操作简单,无需产物的后处理,能最大程度地避免扩增产物的污染。
目前,全球只有两家企业拥有ARMS技术和相应产品,厦门艾德生物医药科技有限公司拥有自主知识产权的ADx-ARMS专利——引物改造技术、独特的缓冲体系以及二次扩增放大的多重设计,厦门艾德凭借ADx-ARMS®技术成功开发了一系列的分子诊断产品(ADx®-EGFR、ADx®-KRAS、ADx®-BRAF等),是我国首批获得国家药监局《医疗器械注册证》和欧盟认证的产品,已在我国100多家三甲医院使用,并远销30多个国家和地区;跨国制药公司阿斯利康等国内外知名机构通过对ADx®-EGFR等产品的严格对比和论证,认为艾德生物医药的技术和产品均已达到国际先进水平,其用于检测EGFR、KRAS、BRAF等基因突变具有简单、方便、快速、灵敏、准确等优点,在临床上有着重要的应用价值。
染色体核型分析(karyotype analysis):将待测的细胞的染色体按照该生物固有的染色体形态特征和规定,进行配对、编号和分组,并进行形态分析的过程。不同物种的染色体都有各自特定的形态结构(包括染色体的长度、着丝点位置、臂比、随体大小等)特征,而且这种形态特征是相对稳定的。
染色体核型分析是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间人类G显带核型图谱关系所不可缺少的重要手段。经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因,比如是由于缺少了什么样的基因才导致的这种疾病。还可根据单个碱基的差异,精确判断染色体DNA链中的基因突变。
正常人的体细胞染色体数目为46条,并有一定的形态和结构。染色体在形态结构或数量上的异常被称为染色体异常,由染色体异常引起的疾病为染色体病。现已发现的染色体病有100余种,染色体病在临床上常可造成流产、先天愚型、先天性多发性畸形、以及癌症等。临床上染色体检查的目的就是为了发现染色体异常和诊断由染色体异常引起的疾病。
人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。染色体特定的带型发生变化,则表示该染色体的结构发生了改变。一般染色体显带技术有G显带(最常用),Q显带和R显带等。
在核型图的组成中,人类常染色体依照长度递减的顺序用数字1到22表示,性染色体用X和Y标示。依照染色体大小递减的顺序和着丝粒的位置,可将其分为七组(A-G组):
|
染色体号 |
染色体大小 |
着丝粒位置 |
随体 |
次缢痕 |
A |
1-3 |
最大 |
中着丝粒 亚中着丝粒 中着丝粒 |
无 |
常见于1号 |
B |
4-5 |
次大 |
亚中着丝粒 |
无 |
|
C |
6-12+X |
中等 |
亚中着丝粒 |
无 |
常见于9号 |
D |
13-15 |
中等 |
近端着丝粒 |
有 |
常见于13号 |
E |
16-18 |
较小 |
中着丝粒 亚中着丝粒 亚中着丝粒 |
无 |
常见于16号 |
F |
19-20 |
较小 |
中着丝粒 |
无 |
|
G |
21-22+Y |
最小(Y有变异) |
近端着丝粒 |
有(Y无) |
|
(表1)人染色体分组
图1:人类染色体核型G显带标准图谱
图2:人类(男性)正常染色体核型(G显带)
第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454 FLX、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。
概述
DNA测序(DNA sequencing)作为一种重要的实验技术,在生物学研究中有着广泛的应用。早在DNA双螺旋结构(Watson and Crick,1953)被发现后不久就有人报道过DNA测序技 术,但是当时的操作流程复杂,没能形成规模。随后在1977年Sanger发明了具有里程碑意义的末端终止测序法,同年A.M.Maxam和 W.Gilbert发明了化学降解法。Sanger法因为既简便又快速,并经过后续的不断改良,成为了迄今为止DNA测序的主流。然而随着科学的发展,传 统的Sanger测序已经不能完全满足研究的需要,对模式生物进 行基因组重测序以及对一些非模式生物的基因组测序,都需要费用更低、通量更高、速度更快的测序技术,第二代测序技术(Next-generation sequencing)应运而生。这三个技术平台各有优点,454 FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数 据量相同的情况下,成本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而在15X覆盖率时的准确度可以达 到99.999%,是目前第二代测序技术中准确度最高的。虽然第二代测序技术的工作一般都由专业的商业公司来完成,但是了解测序原理、操作流程等会对后续 的数据分析有很重要的作用,下文将以Illumina/Solexa Genome Analyzer 测序为例,简述第二代测序技术的基本原理、操作流程等方面。
基本原理
Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。
操作流程
1)测序文库的构建(Library Construction)
首先准备基因组(虽然测序公司要求样品量要达到200ng,但是Gnome Analyzer系统所需的样品量可低至100ng,能应用在很多样品有限的实验中),然后将DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头(Adaptor)。如果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。片段的大小(Insert size)对于后面的数据分析有影响,可根据需要来选择。对于基因组测序来说,通常会选择几种不同的insert size,以便在组装(Assembly)的时候获得更多的信息。
2)锚定桥接(Surface Attachment and Bridge Amplification)
Solexa测序的反应在叫做flow cell的玻璃管中进行,flow cell又被细分成8个Lane,每个Lane的内表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。
3)预扩增(Denaturation and Complete Amplification)
添加未标记的dNTP 和普通Taq 酶进行固相桥式PCR 扩增,单链桥型待测片段被扩增成为双链桥型片段。通过变性,释放出互补的单链,锚定到附近的固相表面。通过不断循环,将会在Flow cell 的固相表面上获得上百万条成簇分布的双链待测片段。
4)单碱基延伸测序(Single Base Extension and Sequencing)
在测序的flow cell中加入四种荧光标记的dNTP 、DNA聚合酶以及接头引物进行扩增,在每一个测序簇延伸互补链时, 每加入一个被荧光标记的dNTP就能释放出相对应的荧光,测序仪通过捕获荧光信号,并通过计算机软件将光信号转化为测序峰,从而获得待测片段的序列信息。 从荧光信号获取待测片段的序列信息的过程叫做Base Calling,Illumina公司Base Calling所用的软件是Illumina’s Genome Analyzer Sequencing Control Software and Pipeline Analysis Software。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。随着读长的增加,错误率也会随之上升。
5)数据分析(Data Analyzing)
这一步严格来讲不能算作测序操作流程的一部分,但是只有通过这一步前面的工作才显得有意义。测序得到的原始数据是长度只有几十个碱基的序列,要通过生物信息学工具将这些短的序列组装成长的Contigs甚至是整个基因组的框架,或者把这些序列比对到已有的基因组或者相近物种基因组序列上,并进一步分析得到有生物学意义的结果。
表观遗传学(Epigenetics)指DNA序列不变,而基因表达却发生了可遗传的改变。这种改变是细胞内除了遗传信息以外的其他可遗传物质发生的改变,且这种改变在发育和细胞增殖过程中能稳定传递。表观遗传调控包括DNA甲基化,组蛋白修饰(磷酸化,乙酰化,甲基化等)和小RNA调节,是在DNA序列的基础上对基因表达的调节,是细胞分化的本质。
DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位以共价键结合一个甲基基团。正常情况下,人类基因组中的“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态;与之相反,人类基因组中大小为100-1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。
焦磷酸测序(Pyrosequencing)技术作为一种新的序列分析技术,该技术无须进行电泳,DNA片段也无须荧光标记,操作极为简便,能够快速地检测甲基化的频率,对样品中的甲基化位点进行定性及定量检测,为甲基化研究提供了新的途径。